karim sarhane

Growth Hormone Shows Promise in Treating Peripheral Nerve Injury

karim sarhane
Dr. Karim

With more than a decade of experience as an accomplished surgeon-scientist, Karim Sarhane, MD, is a physician who performs complex surgeries that address conditions such as nerve injuries. In the paper “Growth Hormone Therapy Accelerates Axonal Regeneration, Promotes Motor Reinnervation, and Reduces Muscle Atrophy following Peripheral Nerve Injury,” co-author Karim Sarhane, MD, explored an area in which research was largely lacking. In cases where peripheral nerve injury remains untreated, the prolonged denervation of Schwann cells and muscle can result in permanent nerve damage. The study evaluated growth hormone therapy’s impact in promoting axonal regeneration and maintenance of the target muscle and sensory end organs. The rats in the study underwent femoral nerve transection without repair, as well as sciatic nerve transection with repair. The control group received no treatment, while the other rats were provided with subcutaneous growth hormone on a daily basis. After five weeks, axonal regeneration of the sciatic nerve was assessed, as was muscle atrophy of the gastrocnemius muscle. In addition, Schwann cell proliferation in the denervated distal femoral nerve and motor endplate reinnervation in the soleus muscle were evaluated. The results showed that growth hormone-treated rats had a greater body mass percentage increase, greater cross-sectional muscle myofibril area, superior motor endplate reinnervation, and a greater number of myelinated axons regenerating. The bottom line is that growth hormone therapy seems to have a positive effect in preventing muscle atrophy and helping restore motor function.

Karim Sarhane, MD

karim sarhane

What Are Clinical Trials and Why Are They Important?

Karim Sarhane
Dr. Karim

Medical treatments are evolving quickly, and nowadays, the new alternatives that offer hope to individuals suffering from various illnesses come in the form of clinical trials. Clinical trials investigate the advantages and dangers of new therapies, interventions, and medications. Clinical trials are scientific investigations assessing the efficacy and safety of potential new medical therapies or interventions before their widespread distribution. They involve healthy volunteers and people diagnosed with a disease or disorder for which the standard treatments may not be effective. Clinical trials are usually conducted in four phases, each building on the previous one. Phase 1 trials are the earliest stage of human testing that involve a small group of people who are healthy or who have the condition under study. During phase 1, the primary goal is to determine the safety of the new intervention and the correct dosage. Phase 2 of clinical trials involve a larger group of people with the condition under study. Studying and assessing the intervention’s efficacy is the main focus of this phase. During Phase 3 trials, a larger group of people enrolled to participate in the study to test the new intervention’s effectiveness and safety. Phase 3 clinical trials are randomized, double-blind, and controlled. This means that people are assigned to different groups randomly to receive either the experimental intervention or a placebo treatment. Both the subjects nor the researchers are unaware of which group they are in. After the study, researchers compare both groups’ values. Following regulatory approval, researchers undertake phase 4 trials called post-marketing studies to make the treatment safe and effective. Patients may access innovative therapies and procedures not available to the general public by participating in a clinical study. Patients may also receive specialized medical care and attention from a team of healthcare professionals. However, there are risks to participating in clinical studies, such as getting sick or having unpleasant side effects. Additionally, patients assigned to receive the placebo may become frustrated due to seeing zero improvement in their condition. Placebos are essential to clinical trials because they show how well a new drug works compared to a placebo or standard care. In clinical trials, researchers ensure that their testing results accurately demonstrate a treatment’s safety and effectiveness. They often use a “randomized, placebo-controlled” clinical trial as the gold standard to achieve this. This trial randomly assigns volunteers to a test group that receives the experimental intervention or a control group that receives a placebo or routine care. A placebo is an inactive substance that looks like the drug or treatment being tried. Researchers can tell if improvements seen in the test group are the product of the intervention or simply coincidental by comparing the two data sets. In some trials (double-blind, placebo-controlled), the research team is unaware of which participants receive the treatment, the placebo, or another intervention. Several resources are available to participate in a clinical trial for a medical condition. ClinicalTrials.gov and the National Cancer Institute’s Cancer Trials Support Unit can assist in identifying appropriate clinical trials. Additionally, consulting with a doctor or healthcare provider can provide information about ongoing clinical studies. Support groups and advocacy groups for patients may also know of ongoing clinical trials that could help treat your disease.

Karim Sarhane, MD